
IV. NPS AUTONOMOUS UNDERWATER VEHICLE

A. INTRODUCTION

Detailed knowledge regarding robot requirements is a necessary prerequisite for

implementing robot operation in a virtual world. This chapter describes key

considerations in underwater robotics hardware and software, particularly as

instantiated in the NPS AUV. Familiarity with the Chapter II review of related

robotics projects is recommended. An overview of generic AUV hardware and

software is followed by NPS AUV hardware specifications and software

characteristics. Additional overview descriptions of the NPS AUV and related

research appear in (Brutzman, Compton 91) and (Healey 92a). Due to the large

variety of critical tasks an autonomous underwater robot must perform, a robust

multilevel software architecture is essential. The software architecture used by the

NPS AUV is the Rational Behavior Model (RBM). The three levels of RBM are

described with emphasis on the real-time characteristics of each level. Details are also

provided regarding vehicle software developed in this work. Specific contributions of

this dissertation include extending the RBM execution level and improving

implemented RBM interprocess communication (IPC).

B. UNDERWATER ROBOTICS

Although there are far fewer robots designed to operate underwater than in other

environments, there is much diversity in the hardware and software of those robots

that exist. Underwater robot hardware is mostly concerned with watertight integrity,

maneuvering and sensing. Underwater robot software is usually preoccupied with

real-time hardware control. Implemented higher-level functions are rarely as

sophisticated or capable as desired. Although manipulators and intervention tools are

common on remotely-operated vehicles (ROVs), they remain a rarity on autonomous

robots because fundamental problems of ship control, navigation and classification of

55



detected objects are not well solved. Recent overviews of prominent AUVs and

related technical problems are (Fricke 94) (Zorpette 94). The best way to understand

the capabilities and weaknesses of these vehicles is to watch them in operation. High

quality videotape footage and written summaries of state-of-the-art underwater robots

appear in recent video conference proceedings (Brutzman 93a) (Brutzman 94a).

1. Underwater Vehicle Hardware

Unfortunately the cost in time and money of assembling an AUV is high

and currently beyond the reach of most academic institutions. Nevertheless most

hardware components are commercially available, particularly since the remote

operated vehicle (ROV) industry is well established and thousands of ROVs have been

deployed. Institutions considering building an AUV are advised to start by looking at

existing ROVs and related components that can be adapted for autonomous operation.

Pressure hulls for AUVs typically fall into two categories: streamlined and

open frame. Streamlined hulls are useful for operating at high speed, or minimizing

drag so that propulsion endurance is maximized. Open frame hulls typically consist of

a framework of piping open to the ocean, with all components bolted onto the frame

wherever appropriate. At low operating speeds drag is not a significant handicap, and

the open frame simplifies placement and adjustment of hardware devices.

Power supplies and propulsion endurance are a significant weak point in

current AUVs. Most vehicles are powered by lead-acid or silver-zinc batteries with

usable capacity ranging from several hours to about a day. Hydrogen gas generation

during battery charging or discharge is a serious personnel and equipment hazard.

Research and development work in improving power density has focused for a number

of years on alternative battery electrochemistries, closed-cycle (self-oxidizing) engines

and aluminum hydroxide fuel cells, but dramatic improvements in cost or capability

are not soon expected. Eventually the active research and development of improved

battery technology for electric cars and laptop computers may provide useful power

supply alternatives.

56



Sensors are one of several key technologies that distinguish underwater

robots from ground, air and space-based robots. Since the oceans are generally

opaque to visible light at moderate-to-long ranges, vision-based video systems are

unreliable in turbid water and are ordinarily of use only at short distances. Vision

systems usually require intense light sources which further deplete precious energy

reserves. In comparison to underwater computer vision, sonar (acoustic detection) has

long been a preferred sensing method due to the very long propagation ranges of

sound waves underwater. However, sound waves can be bent by variations in depth,

temperature and salinity. A variety of problems including ambient noise, multipath

arrival, fading, shadow layers, masking and other effects can make sonar use difficult.

Since active sonar typically provides good range values with approximate bearing

values, algorithms for sonar recognition are much different than vision algorithms.

Blue-green lasers are relatively new underwater sensors that are useful since they can

provide accurate range and accurate bearing data at short-to-moderate ranges with low

power consumption. Other hardware sensors of interest to AUVs include pressure

instruments, flow detectors, inertial navigation acceleration and angular rate sensors,

and fast Global Positioning System (GPS) receivers. New and varied sensors are

being developed for oceanographic survey measurements and trace chemical detection

(Bales 94a, 94b).

Communications with underwater vehicles are notoriously difficult.

Tethers can provide high bandwidth and even a power supply, but remain subject to

entanglement and breakage with the subsequent possibility of vehicle loss. Tethers

typically require tether management systems which can be very costly in their own

right. Tethers also induce undesirable and varying drag forces on the underwater

vehicle. Acoustic modems are a useful innovation that can provide communications

links, but are very susceptible to channel noise and channel loss problems. A serious

limitation in current acoustic modems is incompatibility with the Internet Protocol

(IP), and further network research efforts are necessary to incorporate forward error

correction (FEC) and transport protocol functionality for reliable internetworking of

57



underwater devices. Acoustic long-baseline and short-baseline navigation can be used

to determine underwater vehicle location by measuring time of flight of pings between

beacons at fixed locations and a transponder located on the vehicle. Beacon pings can

be further encoded to pass positional information back to the vehicle. Unfortunately,

the primary limitation of navigation in an acoustic field is that beacons must be

deployed beforehand in known locations around the area of interest.

2. Robot Software Architectures

Designing an AUV is complex. Many capabilities are required for an

underwater mobile robot to act capably and independently. Stable physical control,

motion control, sensing, motion planning, mission planning, replanning and failure

recovery are example software components that must be solved individually for

tractability. The diversity and dissimilarity of these many component subproblems

precludes use of a single monolithic artificial intelligence (AI) paradigm.

Distributed AI usually addresses specifications and protocols between

similar autonomous agents working cooperatively on global problems. Hybrid

reasoning often refers to novel combinations of two or three techniques to improve

overall performance when solving a single problem type. Neither definition appears

suitable for general robot control. Multiple dissimilar AI processes must interact in an

intelligent manner to achieve the robust capabilities and multiple behaviors needed by

a mobile robot (Elfes 86). A variety of robot architectures have been proposed and

developed to provide the control framework under which multiple AI processes can

interact. A brief discussion of current robot architectures is therefore useful to clarify

the scope of robot design issues.

Robot architectures can be classified over a spectrum that ranges from

hierarchical to reactive (Byrnes 93). Hierarchical architectures can be characterized as

being deliberative, symbolic, structured, "top down," goal-driven, and having explicit

focus of attention. They are often implemented using backward inferencing.

Hierarchical approaches typically contain world models and use planning and search

techniques to achieve strictly defined goals. Hierarchical architectures tend to be

58



somewhat rigid, unresponsive in unpredicted situations and computation-intensive.

Nevertheless they remain capable of highly sophisticated performance.

Reactive architectures are subsumptive, "bottom up," sensor-driven, layered

and may often be characterized by forward inferencing. Reactive architectures attempt

to combine robust subsuming behaviors while avoiding dynamic planning and world

models. Reactive architectures appear to behave somewhat randomly and achieve

success without massive computations by using well-considered behaviors that tend to

lead to task completion (Brooks 86, 90). Scaling up to complex missions is difficult.

Stability and deterministic performance is elusive.

It is interesting to note that numerous robot architecture researchers have

recently proposed hybrid control architectures (Kwak 92) (Bonasso 92)

(Bellingham 90) (Payton 91) (Spector 91). A common theme in these proposals is

integrating the long-term deliberation, planning and state information found in

hierarchical approaches with the quick reaction and adaptability of subsumptive

behaviors. Individual weaknesses of hierarchical and reactive architectures appear to

be well-balanced by their respective strengths.

Physical stability and reliability deserve repeated mention in the context of

multiple interacting processes. Control system considerations are often overlooked

under the guise of simplifying assumptions that hide important real world restrictions

and pitfalls. Robot survivability dictates that physical and logical behavior must

always converge to a stable yet adaptive set of states. Divergence, deadlock, infinite

loops and unstable dynamic behavior must be detectable and preventable. Hard

real-time operating constraints on sensing, processing, action and reaction must be

similarly resolved. Robotics research in other environments are expected to be

pertinent and useful; for example, physical stability prerequisites become similarly

important for ground robots as they progress from structured to unrestricted

environments. Finally it is worth reiterating that an underwater virtual world is

proposed as the best way to enable repeated testing of underwater vehicle control,

stability and reliability.

59



C. NPS AUV HARDWARE

The NPS AUV has four paired plane surfaces (eight fins total) and bidirectional

twin propellers. The hull is made of pressed and welded aluminum. The vehicle is

ballasted to be neutrally buoyant at 387 lb. Design depth is 20 ft (6.1 m). A pair of

sealed lead-acid gel batteries supports vehicle endurance of 90-120 minutes at speeds

up to 2 ft/sec (0.61 m/sec).

A free-flooded fiberglass sonar dome supports two forward-looking sonar

transducers, a downward-looking sonar altimeter, a water speed flow meter and a

depth pressure cell. Five rotational gyros mounted internally are used to measure

angles and rates for roll, pitch and yaw respectively. Cross-body thruster tunnels were

designed and built for the NPS AUV. An inline bidirectional propeller in each

thruster can provide up to 2 pounds of force (Cody 92) (Healey 94b).

Detailed specifications of all NPS AUV hardware components are presented in

(Torsiello 94). An external view of the vehicle is shown in Figure 4.1 and primary

internal component arrangements are shown Figure 4.2. A detailed schematic of

vehicle internal components appears in Figure 4.3. A photograph showing the

NPS AUV in the test tank is provided in Figure 4.4.

60



Figure 4.1. Exterior view of NPS AUV, 8 plane surfaces and twin propellers.
Length is 8’ (2.4 m), height 10" (25.4 cm), width 16.5" (41.9 cm).
Weight and buoyancy are each 435 lb (197.5 kg) when submerged.

Figure 4.2. Internal view of principal NPS AUV components.
Four cross-body thrusters: two lateral and two vertical.
Two card cages contain 68030/OS-9 and 386/DOS microprocessors.

61



Figure 4.3. NPS AUV II internal components layout (Torsiello 94).

Figure 4.4. NPS AUV shown in test tank (Torsiello 94).

62



The NPS AUV is primarily designed for research on autonomous dynamic

control, sensing and AI. Software control of the vehicle is provided at a high level

corresponding to strategic planning and tactical coordination, as well as at a low level

corresponding to hydrodynamics control of plane surfaces and propellers. Sensors are

also controlled via execution level microprocessor-hardware interfaces, although some

sensor functions (such as steering individual sonar transducer bearing motors) may be

optionally commanded by the supervising tactical level. TRITECH sonar range

resolution varies with maximum range and selected range bin size. Sonar

specifications appear in Table 4.1, derived from (Torsiello 94).

Table 4.1. NPS AUV Sonar Types and Specifications.

Sonars and
parameters

Tritech ST-1000 Tritech ST-725 Datasonics
PSA-900

Function Conical scan Vertical sector scan Depth sensing

Beam shape 1° pencil cone 24° vertical
by 1° wide

10° cone

Frequency 1250 KHz 725 KHz 210 KHz

Maximum range 4..50 m 6..100 m 27 m

Range resolution 1..80 cm 4..80 cm ~ 1 cm

Steering increment 0.9° horizontal
mechanical drive

0.9° horizontal
mechanical drive

fixed downward
not steerable

Operating modes Sector Profile,
Sector Scan

Sector Scan Data averaging
(4 ping window)

Ping rate 10 Hz 10 Hz 10 Hz

Location in bow port below port above starboard below

Two microprocessors are available for use aboard the NPS AUV:

a Motorola 68030 and an Intel 30386. Each is mounted on a 4" by 6" Eurobus card

manufactured by Gespac Inc. The operating system for the 68030 is the OS-9

63



real-time operating system by Microware Inc. Support for the OS-9 operating system

running on Gespac computers is problematic at best; a recommended reference for

OS-9 users is (Dayan 92). Operating system for the 30386 is Digital

Research (DR) DOS 6.0, chosen for small kernel size and the ability to manually

switch between tasks. Multitasking operating systems such as Windows and OS/2

were earlier considered and rejected due to their insistence on graphical user interface

overhead. To date the 30386 has not been used for in-water missions. A variety of

different processors and operating systems are being considered for future NPS AUV

configurations. Unfortunately the large volume of intricate legacy code dedicated to

controlling numerous analog-digital controller cards and devices has so far precluded

wholesale replacement of the current microprocessor/operating system combinations.

Vehicle designers must note that sealed lead-acid gel batteries are still

susceptible to hydrogen gas generation and venting (Calder 94), which becomes an

explosive hazard above 5% by atmospheric volume. Reliance on NPS AUV battery

seals together with excessive recharging, mission repetition and insufficient venting

resulted in a submerged hydrogen explosion in early 1994. Significant hull damage

resulted and most electrical equipment was a complete loss due to flooding under

power. No personnel were injured. Repairs took most of the year, but the refurbished

and renamed NPS AUV "Phoenix" resumed submerged testing in October 1994.

D. NPS AUV SOFTWARE

Ongoing development of NPS AUV software has continued for over eight years.

A great deal of novel software research has been conducted during this period.

Underwater robot software architectures are a particular challenge because they include

a great many of the hardest problems in robotics and AI over short, medium and long

time scales. The principal features and lessons learned to date relating to NPS AUV

software are summarized in the following sections.

64



1. Rational Behavior Model (RBM) Software Architecture

The Rational Behavior Model (RBM) is a trilevel multiparadigm software

architecture for the control of autonomous vehicles (Kwak 92) (Byrnes 92, 93, 95).

Strategic, tactical and execution levels correspond roughly to high-level planning,

intermediate computational processing of symbolic goals, and direct interaction with

vehicle hardware and the environment. The three levels of RBM correspond to levels

of software abstraction which best match the functionality of associated tasks.

Temporal requirements range from soft real-time planning at the strategic level to hard

real-time requirements at the execution level, where precise control of vehicle sensors

and propulsion is necessary to prevent mission failure and vehicle damage.

RBM provides an overall structure for the large variety of NPS AUV

software components. A particular advantage of RBM is that the three levels are

analogous to the watchstanding organization of naval ships. The strategic level

matches long-range planning by the commanding officer. The tactical level

corresponds to officer of the deck, navigator and officer watchstanders. The execution

level corresponds to helmsmen, planesmen and sonar operators. Such analogies are

particularly useful for naval officers working on this project who know how to drive

ships, since it provides a well-understood partitioning of duties and a precisely defined

task lexicon.

Programming paradigms are explicitly defined at each level of RBM in

order to best match programming languages to objectives. Strategic level goals are

typically defined and met using backwards chaining. Tactical modules are

object-oriented and use message passing to communicate. The execution level is

imperative. Typical languages for each level areProlog, object-orientedClassic Ada

andC, respectively. Variations on the strategic level have produced provably

equivalent variations using forward chaining and backward chaining (Scholz 93).

(Byrnes 93) implemented all three RBM levels concurrently in simulation, running

under networked Unix workstations but not on the NPS AUV proper. Initial

implementation efforts for this dissertation included integrating and testing a tactical

65



level with an improved execution level, where source code for both levels compiles

identically and runs compatibly either on vehicle hardware or on networked

workstations.

The primary contribution of this dissertation to RBM is extensive

development and implementation of the execution level (Brutzman 94e), as well as

formal specification and implementation of execution level communications

requirements. As predicted by (Brutzman 92a, 92c), availability of hydrodynamics and

sonar models for integrated simulation during robot development have been invaluable

for development of robot control algorithms. Implementations of strategic and tactical

levels in previous theses have only run in isolation and have never been tested

underwater due to inadequate execution level functionality (Brutzman 92a) (Byrnes 93)

(Compton 92) (Ong 90) (Scholz 93) (Thornton 93) (Wilkinson 92). Completion of a

robust execution level in this dissertation now permits meaningful integration of

strategic and tactical RBM levels with a capable execution level.

2. Multiple Operating Systems and Multiple Programming Languages

Given the relative uniqueness and slowness of the NPS AUV

microprocessors, operating systems and interfaces, it is desirable to be able to compile,

run and test AUV software on a variety of platforms. The predominant computing

asset available to the NPS AUV research group is Unix workstations, particularly

Silicon Graphics Inc. (SGI) graphics workstations. Although Unix is not a real-time

operating system, it can be made to emulate the functionality of the real-time

operating system OS-9 used for the execution level, and the more common DOS

operating system used for the tactical level. To date the strategic level has not been

implemented in the vehicle due to lack of a workable multitasking environment on the

tactical 80386 microprocessor. Several attempts to multitask strategic and tactical

levels using theAda and/orCLIPS languages were unsuccessful (Scholz 93)

(Thornton 93).

The area of greatest interest to robotics researchers is developing source

code that implements proposed algorithms. Standardized languages are an essential

66



requirement for source code that is portable across multiple hardware platforms.

Languages used in the NPS AUV project reflect this criteria:Prolog, CLIPS, Ada,

Classic Ada, C andC++ have all been used. Theoretically, compilers for different

architectures will compile source code identically on each platform. In practice,

successful compilation of a single version of source code by multiple compilers is a

rarity. Modified compilation controlmakefilesand context-sensitive compiler

directives may be able overcome variant compiler limitations (Brutzman 94e). Such

an approach is essential because there then needs to be only one single version of

robot code that can compile and run successfully in any appropriate environment.

NPS AUV project experience has repeatedly shown that failure to insist on

cross-platform compatibility leads to "versionitis" and configuration control problems

which prevent research code from being successfully implemented and integrated with

previous vehicle software efforts. Such failures are unacceptable.

Given that source code is written in a standardized language and compiles

on all pertinent platforms, a further significant problem can occur. Although the

hybrid language approach espoused by RBM provides an excellent match between

software abstraction and intended functionality, getting dissimilar languages to

compile, link and execute compatibly is extremely difficult. In every possible

combination that we have examined and tested, implementation of hooks between

languages and linking multiple language object files were not standardized.

Furthermore external language hooks typically do not perform as advertised. Despite

Herculean efforts, several RBM-related research efforts have failed to get different

levels of RBM communicating properly due to this vulnerability.

Fortunately, we have encountered one widely available IPC technique that

is likely to support any choice of programming language, operating system or

hardware architecture: use of standard Berkeley Standard Distribution (BSD) sockets

compatible with the Internet Protocol (IP) (Stevens 90). IP-compatible socket

communications are implemented on all computer platforms, and are available as

auxiliary function libraries in most programming languages of interest. Use of sockets

67



has several added benefits: processes can run independently, interchangeably and

remotely on vehicle processors or networked workstations. Current NPS AUV

implementation efforts call for replacing the hard-wired and hard-coded serial and

parallel port communications between processors with a network interface for each

vehicle microprocessor. Building a small network internal to the vehicle eliminates

specialized hardware and software communications, and does not impose a noticeable

performance penalty. It also permits connecting vehicle processors and processes to

any remote entity on the Internet. Even tethers between an unmanned underwater

vehicle (UUV) and the surface can be Ethernet connections (Bellingham 94). The

strength and numerous benefits of this approach have led us to network all possible

components of AUV-related software, both internal and external.

3. Execution Level Software

The executionprogram is a new and extended implementation of the RBM

execution level for the NPS AUV (Brutzman 94e). Originally based on the work of

(Marco 95) and others,executionnow includes a command language and runs

identically on the laboratory AUV hardware or on a networked SGI workstation.

Real-time performance for a 10 Hz control cycle was maintained in each environment.

Code development on workstations enables faster compilation and provides more

robust debugging tools which are nontrivial benefits for such a large program.

Principal components of theexecutionprogram include invocation and stored mission

script file commands, communications to the tactical level, communications to the

virtual world, vehicle hardware interfaces, maneuvering control algorithms,

standardized telemetry data recording, and supplemental mathematical functions to

support computational geometry calculations. These supplemental functions include

normalize (angle)which normalizes an angle to the range [0..π), normalize2 (angle)

which normalizes an angle to the range (-π/2..π/2], andatan2 (y, x)which returns the

angle to a point in the proper quadrant.

Vehicle control algorithms are implemented using either thrusters (hovering

modes), planes/rudders/propellers (cruise modes) or all in combination. Control

68



algorithms for the following behaviors are included: depth control, heading control,

open-loop rotation, open-loop lateral motion, waypoint following and hovering.

Control algorithms are permitted to operate both thrusters and planes/rudders/propellers

simultaneously when such operation does not mutually interfere. All control code has

been developed and tested in conjunction with the construction of the hydrodynamics

model presented in Chapter VI. Design, tuning and optimization of control algorithms

in isolation and in concert is the subject of active research (Cristi 89) (Yoerger 85, 90)

(Papoulias 89, 91) (Healey 89, 92b, 93) (Fossen 94) (Marco 95) and remains an

important area for future work. Control algorithm robustness is a particularly

important topic since potentially fatal nonlinear instabilities are possible and vehicle

reliability is paramount. Individual control algorithms created as part of this

dissertation follow.

Rudder steering control equations:

(4.1)

Planes depth control equations:

(4.2)

Note that planes and rudder are each constrained≤ ± 40° to prevent excessive

deflection and subsequent reduction of control above ± 45°. Planes and rudders are

zeroed at very low forward speeds in order to eliminate synchro hunting and

chattering.

69



Vertical thruster depth control equations:

(4.3)

Lateral thruster heading control equations:

(4.4)

Waypoint hovering mode control equations:

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

70



(4.10)

(4.11)

(4.12)

Associatedk coefficients are all positive and appear in Figure 4.5.

4. Communications Among AUV Processes and the Virtual World

Since RBM is a multilevel architecture, communications between levels

must be formally defined. Communications between robot and virtual world must also

be clearly specified. Defining communications includes establishing a physical path

for data transfer as well as defining the syntax and protocol of exchanged messages.

Design objectives include reliability and clarity so that messages are easily created and

easily understood, either by software processes or by people.

71



Two kinds of messages are defined for use by robot and virtual world.

Figure 4.5. Control algorithm coefficients frommission.output.constantsfile.

__________________________________________________

AUV execution level control algorithm coefficients
__________________________________________________

k_psi k_r k_v k_z k_w k_theta k_q

1.00 2.00 0.00 15.00 2.00 4.00 1.00

k_thruster_psi k_thruster_r k_thruster_rotate

0.60 5.00 2.25

k_thruster_z k_thruster_w

10.00 80.00

k_propeller_hover k_surge_hover

200.00 6000.00

k_thruster_hover k_sway_hover

4.00 40.00

The first is the telemetry vector, which is a list of all vehicle state variables pertinent

to hydrodynamic and sensor control. Telemetry vectors are passed as a string type.

The second kind of messages allowed are free-format commands. Free-format

command messages are also string types, starting with a predefined keyword and

followed by entries which may optionally have significance depending on the initial

keyword. Messages with unrecognized keywords are treated as comments. These two

kinds of messages (telemetry and commands) can be used for any communication

necessary among robot-related entities. Employment of string types facilitates transfer

72



between different architectures, transfer via sockets, and file storage. String types also

ensure that all communications are readable by both robot and human, a trait that is

particularly useful during debugging. An open format for command messages permits

any user or new application to communicate with little difficulty.

Within the AUV, the basic communications flow between execution level

and tactical level is straightforward. All telemetry vectors are sent from the execution

level to the tactical level, providing a steady stream of time-sensitive, rapidly updated

information. The tactical level may send commands to the execution level as desired,

and the execution level may return informational messages between telemetry vectors

as appropriate. Nonadaptive tactical level functionality can also be provided by

prescripted mission command files. Telemetry vector records and command messages

are logged in separate mission output files for post-mission analysis and replay. Each

of these communications message types has been implemented and tested satisfactorily

(Brutzman 94e). Communication protocols between tactical level and strategic level

are presented in (Byrnes 93) and are not examined here.

73



Specific elements of the telemetry record appear in Figure 4.5 below.

Both data communications internal to the vehicle (execution and tactical levels) and

data communications external to the vehicle (execution level and virtual world) utilize

the telemetry vector and keyword command message conventions. Currently the data

path between execution and tactical levels consists of paired simplex text streams over

serial and parallel connections between the two microprocessors. The data path

between the execution level and the virtual world is via an Ethernet socket. In the

future, serial and parallel port data paths between the execution and tactical processors

are expected to be replaced by Ethernet sockets. Figure 4.7 shows physical data paths

and information flow both internal and external to the vehicle.

Figure 4.6. Telemetry vector elements.

time

x y z phi theta psi

u v w p q r

x_dot y_dot z_dot phi_dot theta_dot psi_dot

delta_rudder delta_planes

propeller_port_rpm propeller_stbd_rpm

thrusters_bow_vertical thrusters_stern_vertical

thrusters_bow_lateral thrusters_stern_lateral

ST1000_range ST1000_bearing ST1000_strength

ST725_range ST725_bearing ST725_strength

74



Figure 4.7. NPS AUV hardware configuration and internal interprocess communication (IPC).

75



The telemetry vector serves several essential purposes. In addition to

providing a steady stream of information from the execution level to the tactical level,

the telemetry vector also serves as the data transfer mechanism between execution

level and virtual world. Efficient communications between robot and virtual world are

essential if rapid real-time 10 Hz robot response is to be maintained. The telemetry

record is a concise and complete way to support all of these data communications

requirements.

Robot execution software is designed to operate both in the virtual world

and in the real world. While sensing in the virtual world, distributed hydrodynamics

and sonar models fill in pertinent telemetry vector slots. While sensing in the real

world, actual sensors and their corresponding interfaces fill in pertinent telemetry

vector slots. In either case, the remainder of the robot execution program which deals

with tactical communications, command parsing, dynamic control, sensor interpretation

etc. is unaffected. While operating in the virtual world, robot propulsion and sensor

commands are communicated via the same telemetry vector. While operating in the

real world, robot propulsion and sensor commands are sent directly to hardware

interfaces for propellers, thrusters, planes, rudders, sonar steering motors etc. Again

almost all parts of the robot execution program are completely unaffected by this

difference.

The telemetry vector is therefore the key data transfer mechanism whereby

vehicle operation remains transparent and identical either in the virtual world or in the

real world. Telemetry vector updates also define the communication protocol between

execution level and virtual world. As might be expected, the execution level program

follows the common robotics cyclic paradigm ofsense-decide-act. Figure 4.8 shows

in detail how the flow of control proceeds and the telemetry vector is modified during

eachsense-decide-actcycle. Figure 4.9 provides an overview of the telemetry vector

update sequence as an alternate means of portraying the validity of this approach.

76



Figure 4.8. Data flow via the telemetry vector during eachsense-decide-actcycle.

77



Figure 4.9. Telemetry vector modifications during eachsense-decide-actcycle.

E. SUMMARY AND FUTURE WORK

This chapter discussed general underwater robotics hardware considerations and

software architectures. Hardware specifics of the NPS AUV are outlined.

Descriptions of NPS AUV software focus on the Rational Behavior Model (RBM)

architecture. Multiple operating system and multiple programming language strengths

and drawbacks are presented from the perspective of several years of implementation.

Significant contributions to NPS AUV execution level functionality are described in

detail, including a tactical command language and multiple dynamics control

algorithms. Specifications are then presented for communications between execution

78



level, tactical level and virtual world. A combination of two record types is shown to

be essential and complete: the telemetry vector of vehicle state, and free format

command messages. Telemetry is particularly important as the key to real-time data

transfer and interaction between the robot execution level, the underwater virtual world

and distributed users observing robot operation.

Future work includes many projects. Completing vehicle repairs and duplicating

test results from prior to the 1994 mishap are nearly complete. The execution level

program created for this dissertation needs to be reintegrated with the repaired vehicle.

Integration of GPS, internal network connections between microprocessors,

implementing strategic and tactical levels in the water, and porting sonar classification

algorithms are all planned or in progress. NPS AUV capabilities are nearly ready to

support AI research in robot architectures, sensing, classification and planning

identically in the water or in the virtual world.

79


